Computational Steering : a Case Study

Robert van Liere
Department of Interactive Systems
CWi
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

e-mail: robert!|@cwi.nl

We discuss the application of interactive visualization techniques to a class
of problems where a user interacts with an underlying mathematical model
and steers its simulation in the hope of “gaining new insight”. The primary
interface for this interaction are visual images and the subsequent input based
upon the user's perception and interpretation of these images. The emphasis Is
on applications which involve physical models in higher-dimensional space; in

particular, we focus on the simulation, visualization and interaction of chemical
reactions.

In this paper we present several aspects of our ongoing work in interactive

visualization. After introducing simple underlying concepts, we discuss some
iIssues that we are studying.

1. INTRODUCTION

Before we delve into a discussion about scientific visualization and how 1t 1s
done, it is useful to understand the reason why users are finding interactive
visualization tools indispensable for their daily work. From the point of view

of the end user, there are three fundamental problems currently plaguing large
scale numerical simulations:

o large volumes of output data can be produced from a relatively small
amount of input data;

e data can be produced faster than it can be stored onto a mechanical device,
such as disk;

e data can be produced and stored faster than a user can comprehend 1ts
significance.

The overwhelming amount of data generated by these large scale numerical
simulations makes it impossible for users to quantitatively examine more than a
tiny fraction of a given solution. Scientific visualization is an emerging interdis-
ciplinary field that is responding to the need for insight into data representation
through creation of visualization tools. The purpose of scientific visualization is
thus to enhance existing scientific and numerical methods by increasing a sci-
entist’s ability to see data and comprehend the results of computations. The
conveyed information undergoes a qualitative change because it brings the eye-
brain system, with its great pattern-recognition capabilities, into play in a way
that 1s impossible with purely numerical data.

As a brief introduction to the role that visualization plays within simulations
and experiments, we introduce a reference pipeline which acts as a framework to
explain the visualization process. The primary interface for interaction between
user and simulation are the visual images as presented through the rendering
process and the subsequent input based upon the user’s perception and inter-
pretation of these images.

model

Bimulate| W

map render

FIGURE 1. The visualization pipeline.

The visualization pipeline has four major phases:

e T'he modeling phase, which denotes the process of finding a mathematical
model of some physical phenomenon occurring in the real world. In general,
the resulting model is in the form of a set of partial differential equations
and as such 1s not capable of being solved numerically. In some limited
cases the model can have an exact analytic solutions, although this is rare.

e The simulation phase denotes the simulation of the mathematical model
after it has been approximated by various discretization techniques. The
discretization of space represents a sampling of the real world at a small
number of selected points. Thus, it is the interface between that which is
not modeled and that which must be handled with care. To satisfy these
constraints, boundary conditions must be established to handle spatial ap-
proximation of the rest of the world, and initial conditions to approximate
the temporal conditions leading up to the time the simulation starts.

208

o The data mapping phase is responsible for preparing the raw simulated
data to geometric primitives which can effectively convey the information
content of data visually. Each set of data can be transformed onto a
broad array of geometric primitives. For example, a three-dimensional
primitives to three-dimensional volumetric primitives. Each representation
form reveals different aspects of the information contained within the data
set. BEvery geometric primitive type has a concomitant set of surface or
volumetric properties assigned to it which give the primitive distinguished
visual characteristics.

T'here 1s a trade-off between an informative and an economical represen-

set. For three-dimensional data sets it is possible to generate up to an
order of magnitude more data in the form of geometric primitives than the
raw data they represent. The generation of a large number of primitives
can also be very compute intensive, as computationally demanding as the
simulation 1tself.

The mapping phase is the key to the visualization pipeline, and the natural
juncture of scientific and graphical data.

e The presentation phase which produces the actual 1mage using various
rendering operations like projection, shading, texture mapping and hidden
surface removal. The rendering phase is the easiest of the entire visu-
alization process to define. In general, the rendering techniques used in

talnment and television computer animation industry, since the scientists’
goals are not visual realism but scientific insight. This property permaits
several of the commonly used algorithms to be implemented 1n hardware,
such as z-buffering of points, lines and polygons, sphere rendering, and vol-

and currently of lower quality than that achievable in software, it 1s much
faster. In the computational sciences, interactive speed 1s more important
than elaborate illumination models.

Due to the exploratory character of the visualization process, the pipeline 1s
not organized as a set of linear phases but as a cycle in which a user can imteract
with previous phases. Computational steering is a form of interaction which pro-
vides a user, through the manipulation of a visual representation of the ongoing
calculation, extensive control over a numerical calculation. As an illustrative
example consider the situation in which steering gives a user the opportunity to
interrupt a simulation of a physical phenomenon, query or mutate some param-
eters and then continue the simulation. Examples of the parameters that a user
may want to manipulate interactively are spatial grid definitions, manipulation
of temporal aspects of simulation, and the specifications of other relevant initial
conditions. In this situation, visual representations are responsible to convey

209

AEH I -4 ¥ LT S ity U7 2 e L e e

the behavior of the simulated mathematical model.

Providing users with effective steering techniques will dramatically shorten
the modeling/simulation/analysis cycle because these techniques allow users to
“directly manipulate” the underlying simulation. Furthermore, computational
steering provides the basis for visual modeling and analysis environments, in
which users (a) iteratively define and refine a model of some observed physical
phenomenon and (b) incrementally analyze the results of a simulation.

Readers are encouraged to read [8] and [5] for a more complete introduction
to visualization techniques and interactive visualization.

2. PARAMETER ESTIMATION IN NON-LINEAR DIFFERENTIAL EQUATIONS

We study computational steering within the application framework of kinetic
reactions of chemical processes. Complex chemical reactions are modeled as a
parameterized set of differential equations which, given a number of conditions,
can be solved with well known numerical techniques. However, in order to get a
quantitative and mathematical understanding ot the model being investigated,
a chemist 1s not only interested in the most optimal values of the parameters,
but also in issues such as the reliability and stability of the model.

2.1. Problem formulation
The mathematical model is formulated as a parameter estimation problem:

y(to, p) Yo(P)

|

where the variable vector is denoted as: y: R x R"* — [R", and the system
of equationsas : G: R x R* x R — R", in whicht € R and p € R™
represents the vector of parameters.

In this formulation the parameter vector p cannot be determined. However,
assume that {(¢;,y;")}’_,, are k observations of the chemical reaction, at time
t; for the ¢;-th component of the variable vector, y. The parameter vector, p, 1s
a solution of the nverse problem, it the following equation holds :

ch:s,; (tzap) T yz — U, 1 = 13"'ak' (2)

In general this equation cannot be met; rather, curve fitting techniques are

applied which minimize the difference. The inverse problem can thus be stated
as: determine p, such that

ﬁ

Y (p) — Y |is minimal , (3)

in which:

Y(p) — (ym (tlap)v SRR ka (tka p))T 3

210

an (i
Y (y :(l 1 ’ L] L]] ’ y ;;: A‘) L]

A particular minimization criterion, and the one chosen in the current imple-
mentation, 1s the sum of the squares of the discrepancies between the calculated
values and the observed values; i.e.

. 112
Sp)=|Y(p) - Y| . (4)

Standard numerical techniques can be used to find vectors p that minimize
S(p). Details of these solution methods can be found in [1].

2.2. Discussion
The inverse problem 1s a very attractive problem to use as an application frame-

minimum and that the function S(p) is the best one to minimize, there still
remain many questions the chemist would like to pose. For example :

e what influence do perturbed observations, y;*, have on the minimization
function, S(p) ?

e what is the confidence interval of the found parameter vector, p 7

e are there dependencies between individual parameters p, € p and, if so,
what are these 7

Although visualization is a powerful tool to augment the numerical techniques,
visual representations by themselves are not enough. Even with the best dis-
play techniques, it is impossible to simultaneously display all of the quantitative
information in a large data set in an understandable form. When more pre-
cise information on some aspect of the data is required, it must be specityed
through user interaction. This interaction can include simple refinements of the
color coding of contour levels or complex manipulation of virtual probes that
simulate the physical behavior or measurements. We conjecture that visualiza-
tion techniques must be embedded within the computation so that they may
be used when developing and debugging the underlying model. This calls for a
very intergrated and interactive environment in which users are able to attach
probes and monitor data, in much the same way as oscilloscopes and other kinds
of measuring instruments are used in experimental sciences. Eventually, these
interactive visualization techniques will allow users, through visual specification
and interrogation, to directly manipulate the simulation process itself. Examples
of such techniques are:

e visual specifications of dependencies between parameters and immediately
see the effect that this has on the simulation.

211

to visually apply reconciliation techniques on the collected data and im-
mediately see the effect.

3. VISUALIZATION TECHNIQUES

We will give two characteristic examples of visualization techniques: one which
discusses how S(p) can be visualized and the second on how S(p) can interac-
tively be constructed. These examples are meant only to illustrate some issues
on how visualization can be used to steer a complex numerical computation.

3.1. Parameter space representation

We use isosurfaces to visualize the minimalization function, S(p), with p =
(P15 P2, - - ap?n)T and p; € R. Isosurfaces provide important cues for visualizing
and interpreting 3-D scalar fields. For any scalar field, f(x,y, z), an isosurface
1s defined as the set of points satisfying f(z,y,z) = ¢ for some constant c,
known as the isovalue. The well known Marching Cube algorithms can be used
to compute an isosurface as a set of polygons, [4].

Assume p € R® € R™. We can visualize S(p) by constructing and displaying
1Isosurfaces for various isovalues. These surfaces allows us to display important
information related to dependencies between the chosen parameters. Interactive
controls allow a user to quickly step through all values of S(p), resulting in visual
cues about the stability of the model].

Figure 2 displays this technique for a simple model of three parameters and two
variables. A machine generated description of this model is given in appendix
A. ! In this particular case, the computational domain is a regular 64x64x64
grid. Fach point in the domain corresponds to a parameter vector, p. Each
iIso-surface represents one value of the function, S(p). The left figure depicts the

isosurface when S(p) = 0.4. The figure to the right depicts the isosurface when
S(p) = 0.7.

Lo L TR

!The calculation of S(p) for every point in the 64x64x64 space took almost eight days on
a Silicon Graphics 4D-RPC workstation. Given sufficient memory and graphics performance,
an isosurface can be constructed and displayed from this data set in near real-time.

212

TR Ao DR T LN R W P 5 Mk Charis W T ER R b i " etk

FIGURE 2. Isosurfaces of two values of S(p).

Four dimensional parameter spaces are visualized with attribute mapping
techniques. This is accomplished with a two step algorithm :

P, = (p1, Do, D3, p4) and p4 1S a constant value. Construct an isosurface
from this data. This is done in the same way as sketched out above.

1. For every point in the computational domain calculate S(p,) in which

"

2. For every vertex on the isosurface calculate S(p,) in which p, = (2,y, z,p4)
and (z,y, z) is a vertex point of the isosurface. Define a transfer function
to map these values onto a color as :

S(P2) — {Red(S(P,)), Green(S(D,)), Blue(S(ps))}, (5)
in which :

Red : R — [0,1], (6)

Green : R — [0,1], (7)

Blue : R — [0,1]. (8)

Linear interpolation of the vertex colors over the polygon results in smooth
color transitions over the surface. In this way we see the variation of
the fourth parameter at all locations where S(p,) is equal to a particular
threshold value.

Iconic mapping techniques can be used to map higher dimensional spaces onto
1sosurfaces.

3.2. Interactive Visualization

For the representation techniques given above, we assumed to have all the calcu-
lated data at hand when applying the visualization algorithms to the data set.
Unfortunately, for practical problems, this is not feasible due to :

e the sheer amount of data and the CPU time to calculate this data.

e “the curse of dimensionality” |7]; i.e. points in high-dimensional space tend
to be very nearly equidistant, thus confounding distance-based measures
of structure detection.

To overcome these drawbacks, an octree is used to represent the computa-
tional domain. An octree is a multi-resolution representation of the original
computational domain and can be constructed by adaptively subdividing com-
plete domain into small domains. In general, octrees can significantly improve
performance of algorithms that repeatedly search large computational domains,

213

particularly if the interesting regions are sparse and “lumpy”. Isosurtaces fit this
description. 2

Three operations are required for displaying isosurfaces with octrees :

1. Build a small part of the octree. An initial octree of relatively few nodes
1s built in which each node represents some part of the computational
domain. The tree is built top down and the root represents the complete
computational domain. This region is divided into eight equally sized
sub-regions - by dividing each dimension by two - to produce the root’s
children. This procedure is applied a few times to generate the initial tree.

Building an initial octree is necessary each time three new parameters are
selected.

2. Calculate S(p) for each of the eight corner points, p, in each node of the
octree.

In addition, every node contains a variable indicating the error associated
with that node. Although this error metric can be {reely chosen, the current
implementation uses the following relation :

e, = max{|S(p;) — Sp)| |l i = 1,2,...8} (9)

i.e. the error of node £k at level [of the octree is the maximum of the
differences of minimum function at each point of the node.

Other error metrics may be chosen without effecting the algorithm.

3. An octree walker.

An adaptive algorithm will traverse a path among a subset of nodes in the

octree. The deepest nodes in the full octree correspond to the cubical cells
in the Marching Cubes.

The basic idea is that the user will, after supplying an iso-threshold value
and an error value, interactively steer the tree walker with an input device (the
mouse with the current hardware) through the octree. On each level of the
octree an isosurface will be constructed by calculating S(p) on the fly for each
of the eight points in the region. At each level in the octree, the user supplied
error is compared to the calculated error at given node. If the calculated error
1s less than the user supplied error, the traversal is terminated, otherwise 1t
proceeds downward. If a leaf node is reached and the calculated error is larger
than the user supplied error, the node will be divided into eight sub-regions and
the traversal will continue.

The result is that a user, by using the mouse to navigate through the com-
putational domain to construct an isosurface, can interactively gain insight In

AT S Y AT o - it . A

2Pathological cases exist in which isosurfaces fill nearly the entire computational domain
so that performance will actually deteriorate when an octree is used.

214

TR P

nni el b e e N " . - . ; y
e EFEE.F? T 2 A B e 1L AT TP A5 b b 00 e L e P LT O S e A B

the behavior of the model. The user may adaptively examine regions of the
computational domain at any level of detail. .

Figure 3 illustrates this process. The hgure shows how a cursor is used to
navigate through the computational domain. The cursor, depicted as a small
box in the center, is used to steer the numerical engine 1 the region of interest.
An 1sosurface will be constructed in this region. The figure also depicts other
parts of the isosurface. Note that at all times a user can adjust the parameters
of the navigation process.

F'IGURE 3. Interactive traversal of the octree.

Recently, many visualization researchers have used multi-resolution approxi-
mation schemes, [3], [6], to selectively prune the computational space according
to a user defined error. Similar techniques are used in various “progressive re-
finement” computer graphics algorithms.

3.8. Discussion

Exploration of any non-linear system is a heuristic operation. Slight changes
in the parameter space often yield unpredictable results. As the exploration
proceeds towards to understanding the behavior of a particular problem, many
sub-domains of the model’s local behavior must also be investigated. In many
cases, determining which parameter ranges are interesting is very much a black
art. It is quite common to investigate a stable sub-domain and suddenly make
a transition to a saddle point or cusp of the surface without being aware of the
change in behavior. It may, or may not show up in the simulation trajectories,
and can simply appear as a “did not converge” message from the solver.

More valuable would be to provide the chemist with a set of tools to achieve
some sort of qualitative understanding of the reaction mechanism. We combine
numerical simulations with a variety of interactive visualization techniques in
order to characterize reaction mechanisms in terms that are meaningful to the

215

working chemist. The key idea here is that the chemist can use the qualita-
tive characterization of a given mechanism’s behavior to determine which steps
within the mechanism have an important effect, and which are superfluous and
may therefore be dropped from the numerical calculation. With the appropriate
visual aids, this information can be fed directly into the solver.

4. CONCLUSION

We have presented a number of illustrative examples in which a user directly
interacts with a complex numerical computation. The primary interface for this
interaction are images and the subsequent input based on the user’s interpreta-
tion of the depicted image. This type of interaction introduces a new category
of computational tools for scientists and engineers in which modeling and simu-
lation are tightly integrated with interactive computer graphics.

ACKNOWLEDGEMENT
All work on the numerical methods used in the solver was done by Piet Hemker
and Jan Kok of the Department of Numerical Mathematics at CWI. Their help
and insight on interactive computing is much acknowledged.

Valentein van Dijk has helped in surveying various higher-dimensional repre-
sentation techniques.

REFERENCES

1. P.W. HEMKER (1972). Numerical methods for differential equations in sys-
tem simulation and in parameter estimation. In Proceedings: Analysis and
stmulation, 59-80. North-Holland.

2. P.W. HEMKER (1972). Parameter estimation in non-linear differential equa-
tions. Technical Report MR 134/72, Mathematisch Centrum.

3. D. LEAR and P. HANRAHAN (1991). Hierarchical splatting : A progressive
refinement algorithm for volume rendering. Computer Graphics (SIGGRAPH
91 Proceedings), 25(4):285-289.

4. W. LORENSON and H. CLINE (1987). Marching cubes: A high-resolution 3d
surface construction algorithm. Computer Graphics (SIGGRAPH ’87 Pro-
ceedings), 21(4):163-169.

5. G. NIELSON (1991). Interactive visualization. N. THALMANN and D. THAL-
MANN, editors, New Trends in Modeling and Visualization, 135—-151. Springer
Verlag.

6. P. NING and L. HESSELINK (1991). Adaptive isosurface generation in a
distortion-rate framework. SPIE Conference (’91 Proceedings), 1459:11-21.

7. E.R. TUFTE (1983). The Visual Display of Quantitative Information. Graph-
1cs Press.

8. C. UpsoN (1991). Volumetric Visualization Techniques. D. ROGERS and

R. EARNSHAW, editors, State of the Art in Computer Graphics, 313-350.
Springer Verlag. .

APPENDIX A
This appendix provides a machine generated description of the model used in
Section 3 of this article. ® The model is due to Barnes, [2].

The equations are
DF; =p1Y: — paY1Yo
DFo = p2Y1Ys — p3Y5
The Jacobian df /dy is

pP1 — p2Y2 —p2Y;
p2Y> p2Y1 — p3

The Jacobian df /dp is

Y1, 1Y, O
0 iYo -Y,

The maximal values for y are

YMAX,

1.0

YMAX 5

1.0

The starting values for y are

Yy

I

1.0

Yo

|

0.3

The starting values for dy/dp are

0 0 O
0 0 O

Here only the possible non-zero derivatives of the initial conditions with respect
to the parameters are mentioned.

i T e ATV T, » L

3This is part of a translation scheme which generates IATpX and £77 representations from
a high level Maple description. The translation scheme is due to Dr. P. Hemker and Mr. A.
Peide.

217

